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A.2.2 Pharmacokinetics; a NLME comparison

Model description The ‘one-compartment open model’ is commonly used
in pharmacokinetics. It can be described as follows. A patient receives a dose
D of some substance at time td. The concentration ct at a later time point t
is governed by the equation

ct =
D

V
exp

[
−Cl
V

(t− td)
]

where V and Cl are parameters (the so-called ‘Volume of concentration’ and
the ‘Clearance’). Doses given at different time points contribute additively to
ct. Pinheiro & Bates (2000, Ch. 6.4) fitted this model to a dataset using the
S-Plus routine nlme. The linear predictor used by Pinheiro & Bates (2000,
p. 300) is:

log (V ) = β1 + β2Wt+ uV ,

log (Cl) = β3 + β4Wt+ uCl,

where Wt is a continuous covariate, and uV ∼ N(0, σ2
V ) and uCl ∼ N(0, σ2

Cl)
are random effects. The model specification is completed by the requirement
that the observed concentration y in the patient is related to the true concen-
tration by y = ct + ε, where ε ∼ N(0, σ2) is a measurement error term.

Results Estimates of hyper-parameters are shown in the following table:

β1 β2 β3 β4 σ σV σCl
ADMB-RE -5.99 0.622 -0.471 0.532 2.72 0.171 0.227
Std. Dev 0.13 0.076 0.067 0.040 0.23 0.024 0.054
nlme -5.96 0.620 -0.485 0.532 2.73 0.173 0.216

The differences between the estimates obtained with ADMB-RE and nlme are
caused by the fact that the two methods use different approximations of the
likelihood function. ADMB-RE uses the Laplace approximation, while the
method used by nlme is described in Pinheiro & Bates (2000, Ch. 7).

The time taken to fit the model by ADMB-RE was 17 seconds, while the
computation time for nlme (under S-Plus 6.1) was 7 seconds.

Files http://otter-rsch.com/admbre/examples/pheno/pheno.html
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