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A.1.2 Generalized additive models (GAM’s)

Model description A very useful generalization of the ordinary multiple
regression

yi = µ+ β1x1,i + · · ·+ βpxp,i + εi,

is the class of additive models,

yi = µ+ f1(x1,i) + · · ·+ fp(xp,i) + εi. (A.1)

Here, the fj are ‘nonparametric’ components which can be modelled by pe-
nalized splines. When this generalization is carried over to generalized linear
models, and we arrive at the class of GAM’s (Hastie & Tibshirani 1990). From
a computational perspective penalized splines are equivalent to random effects,
and thus GAM’s fall naturally into the domain of ADMB-RE.

For each component fj in (A.1) we construct a design matrix X such that
fj(xi,j) = X(i)u, where X(i) is the ith row of X and u is a coeffisient vector.
We use the R-function splineDesign (from the splines library) to construct
a design matrix X. To avoid overfitting we add a first order difference penalty
(Eilers & Marx 1996) :

− λ2
∑
k=2

(uk − uk−1)2 , (A.2)

to the ordinary GLM loglikelihood, where λ is a smoothing parameter to be
estimated. By viewing u as a random effects vector with the above Gaussian
prior, and by taking λ as a hyper-parameter, it becomes clear that GAM’s are
naturally handled in ADMB-RE.

Implementation details

• A computationally more efficient implementation is obtained by moving
λ from the penalty term to the design matrix, i.e. fj(xi,j) = λ−1X(i)u.

• Since (A.2) does not penalize the mean of u, we impose the restriction
that

∑
k=1 uk = 0 (see the union.tpl for details). Without this restric-

tion the model would be over-parameterized since we allready have an
overall mean µ in (A.1).

• To speed up computations the parameter µ (and other regression pa-
rameters) should be given ‘phase 1’ in ADMB, while the λ’s and the u’s
should be given given ‘phase 2’.
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Figure A.1: Probablity of membership as a function of covariates. In each
plot, the remaining covariates are fixed at their sample means. The effective
degrees of freedom (df) are also given (Hastie & Tibshirani 1990).

The Wage-union data The data, which are available from Statlib (lib.stat.cmu.edu/),
contain information for each of 534 workers about whether they are members
(yi = 1) of a workers union or not (yi = 0). We study the probability of
membership as a function of six covariates. Expressed in the notation used by
the R (S-Plus) function gam the model is:
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union ~race + sex + south + s(wage) + s(age) + s(ed), family=binomial

Here, s() denotes a spline functions with 20 knots each. For wage a cubic
spline is used, while for age and ed quadratic splines are used. The total
number of random effects that arrise from the three corresponding u vectors is
64. Figure A.1 shows the estimated nonparametric components of the model.
The time taken to fit the model was 165 seconds.

Extentions

• The linear predictor may be a mix of ordinary regression terms (fj(x) =
βjx) and nonparametric terms. ADMB-RE offers a unified approach
to fitting such models, in which the smoothing parameters λj and the
regression parameters βj are estimated simultaneously.

• It is straight forward in ADMB-RE to add ‘ordinary’ random effects to
the model, for instance to accomodate for correlation within groups of
observations, as in Lin & Zhang (1999).

Files http://otter-rsch.com/admbre/examples/union/union.html
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