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A.1.4 Weibull regression in survival analysis

Model description A typical setting in survival analysis is that we observe
the time point t at which the death of a patient occurs. Patients may leave the
study (for some reason) before they die. In this case the survival time is said
to be censored, and t refers to the time point when the patient left the study.
The indicator variable δ is used to indicate whether t refers to the death of the
patient (δ = 1) or to a censoring event (δ = 0). The key quantity in modelling
the probability distribution of t is the hazard function h(t), which measures
the instantaneous death rate at time t. We also define the cumulative hazard
function Λ(t) =

∫ t
0
h(s)ds, implicitly assuming that the study started at time

t = 0. The log likelihood contribution from our patient is δ log(h(t)) −H(t).
A commonly used model for h(t) is Cox’s proportional hazard model, in which
the hazard rate for the ith patient is assumed to be on the form

hit = h0(t) exp(ηi), i = 1, . . . n.

Here, h0(t) is the “baseline” hazard function (common to all patients) and
ηi = Xiβ, where Xi is a covariate vector specific to the ith patient and β is
a vector of regression parameters. In this example we shall assume that the
baseline hazard belongs to the Weibull family: h0(t) = rtr−1 for r > 0.

In the collection of examples following the distribution of WinBUGS this
model is used to analyse a dataset on times to kidney infection for a set of
n = 38 patients (Kidney: Weibull regression with random effects, Examples
Volume 1, WinBUGS 1.4). The dataset contains two observations per patient
(the time to first and second recurrence of infection). In addition there are
three covariates: age (continuous), sex (dichotomous) and type of disease (cat-
egorical, four levels), and an individual-specific random effect ui ∼ N(0, σ2).
Thus, the linear predictor becomes

ηi = β0 + βsex · sexi + βage · agei + βD xi + ui,

where βD = (β1, β2, β3) and xi is a dummy vector coding for the disease type.
Parameter estimates are shown in the table below.

β0 βage β1 β2 β3 βsex r σ
ADMB-RE -4.3440 0.0030 0.1208 0.6058 -1.1423 -1.8767 1.1624 0.5617
Std. dev. 0.8720 0.0137 0.5008 0.5011 0.7729 0.4754 0.1626 0.2970
BUGS -4.6000 0.0030 0.1329 0.6444 -1.1680 -1.9380 1.2150 0.6374
Std. dev. 0.8962 0.0148 0.5393 0.5301 0.8335 0.4854 0.1623 0.3570

Files http://otter-rsch.com/admbre/examples/kidney/kidney.html
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