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A.1.3 Semi-parametric estimation of mean and variance

Model description An assumption underlying the ordinary regression

yi = a+ bxi + ε′i

is that all observations have the same variance, i.e. Var(ε′i) = σ2. This as-
sumption does not always hold, as for the data shown in the upper panel of
Figure A.2. This example is taken from Ruppert et al. (2003).

It is clear that the variance increases to the right (for large values of x). It
is also clear that the mean of y is not a linear function of x. We thus fit the
model

yi = f(xi) + σ(xi)εi,

where εi ∼ N(0, 1), and f(x) and σ(x) are modelled nonparametrically. We
take f to be a penalized spline. To ensure that σ(x) > 0 we model log [σ(x)] ,
rather than σ(x), as a spline function. For f we use a cubic spline (20 knots)
with a 2nd order difference penalty

−λ2

20∑
k=3

(uj − 2uj−1 + uj−2)2 ,

while we take log [σ(x)] to be a linear spline (20 knots) with the 1st order
difference penalty (A.2).

Implementation details Details on how to implement spline components
are given Example A.1.2.

• Parameter associated with f should be given ‘phase 1’ in ADMB, while
those associated with σ should be given ‘phase 2’. The reason is that in
order to estimate the variation, one first needs to have fitted the mean
part.

• In order to estimate the variation function, one first needs to have fitted
the mean part. Parameter associated with f should thus be given ‘phase
1’ in ADMB, while those associated with σ should be given ‘phase 2’.

Files http://otter-rsch.com/admbre/examples/lidar/lidar.html



52 APPENDIX A. EXAMPLE COLLECTION

400 450 500 550 600 650 700

−
0.

8
−

0.
4

0.
0

LIDAR data

x

y

400 450 500 550 600 650 700

0.
00

0.
05

0.
10

0.
15

sigma(x)

x

si
gm

a

Figure A.2: LIDAR data (upper panel) used by Ruppert et al. (2003) with
fitted mean. Fitted standard deviation is shown in the lower panel.



Bibliography

ADMB Development Core Team (2009), An Introduction to AD Model Builder,
ADMB project.

ADMB Foundation (2009), ‘ADMB-IDE: Easy and efficient user interface’,
ADMB Foundation Newsletter 1, 1–2.

Eilers, P. & Marx, B. (1996), ‘Flexible smoothing with B-splines and penalties’,
Statistical Science 89, 89–121.

Harvey, A., Ruiz, E. & Shephard, N. (1994), ‘Multivariate stochastic variance
models’, Review of Economic Studies 61, 247–264.

Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Vol. 43 of
Monographs on Statistics and Applied Probability, Chapman & Hall, Lon-
don.

Kuk, A. Y. C. & Cheng, Y. W. (1999), ‘Pointwise and functional approxi-
mations in Monte Carlo maximum likelihood estimation’, Statistics and
Computing 9, 91–99.

Lin, X. & Zhang, D. (1999), ‘Inference in generalized additive mixed models
by using smoothing splines’, J. Roy. Statist. Soc. Ser. B 61(2), 381–400.

Pinheiro, J. C. & Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS,
Statistics and Computing, Springer.

Rue, H. & Held, L. (2005), Gaussian Markov random fields: theory and appli-
cations, Chapman & Hall/CRC.

Ruppert, D., Wand, M. & Carroll, R. (2003), Semiparametric Regression,
Cambridge University Press.

69



70 BIBLIOGRAPHY

Skaug, H. & Fournier, D. (2006), ‘Automatic approximation of the marginal
likelihood in non-gaussian hierarchical models’, Computational Statistics
& Data Analysis 56, 699–709.

Zeger, S. L. (1988), ‘A regression-model for time-series of counts’, Biometrika
75, 621–629.


